X-Ray Crystal and Molecular Structure of a New Diterpenoid of the ent-Atisane Class

By Isabel Carrascal, Benjamín Rodríguez, and Serafín Valverde*
(Instituto de Quimica Orgánica, Juan de la Cierva, 3, Madrid 6, Spain)
and José Fayos
(Departamento de Rayos X, Instituto Rocasolano, Serrano 119, Madrid 6)

Summary Chemical and crystallographic data are presented for a new diterpenoid, ent-atis-13-en-7 $16,16 \alpha$, 17-triol (1).

Recently, the first example of an oxygenated nitrogenfree diterpenoid of the ent-atisane class has been described. ${ }^{1}$ This diterpenoid, sideritol (ent-atis-13-en-1 $\beta, 16 \alpha, 17$-triol), isolated from Sideritis angustifolia, was assigned its structure on spectroscopic grounds and by correlation with ent17 -nor-atisane, previously prepared from atisine. ${ }^{2}$ Mass spectral data of a minor component (1) isolated from the same source indicated it to be isomeric with sideritol. The i.r. and n.m.r. spectra of a diacetyl derivative of (1) showed them to be remarkably similar to those of sideritol diacetate. ${ }^{1}$ In addition, a biogenetic relationship postulated ${ }^{1}$ for these diterpenoids and others with the ent-15-beyerene skeleton ${ }^{3}$ have been chemically achieved in the case of sideritol. ${ }^{4}$

All these considerations made structure (1) highly probable for this new compound. The half-width of the
signal due to the proton geminal to the secondary alcohol ($W_{\ddagger} 5 \mathrm{~Hz}$) indicates an axial configuration.

Since lack of material precluded a direct chemical correlation between both substances we attempted the prepara-

(11), $R^{1} \equiv R^{2}=H ; X=O H ; Y=H$
(2), $R^{\prime} R^{2}=-\mathrm{CMe}_{2}-: X=O H_{i} Y=H$
(3), $R^{1}, R^{2}=-C M e_{2}-X, Y=0$
tion of a derivative suitable for a single-crystal X-ray diffraction analysis.

Figure. A perspective drawing of the X-ray model of the isosideritol derivative (3).

Compound (1) (isosideritol) affords readily the acetonide derivative (2) (m.p. $167-168^{\circ} \mathrm{C}$) and by oxidation of (2) with $\mathrm{Py}-\mathrm{CrO}_{3}$ a ketoacetonide (3) is obtained. The c.d. curve of (3) $\left(\Delta \epsilon_{290}=+2 \cdot 2\right)$ supports the proposed structure assuming ring B is in a chair-like conformation. ${ }^{5}$

Crystal data: Compound (3), transparent needles, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$, with four molecules of $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3}$ in a unit cell of dimensions $a=18.500(5)$, $b=16 \cdot 393(3)$ and $c=6.627(1) \AA$. A total of 3318 unique diffraction maxima with $\theta<30^{\circ}$ were recorded using
monochromated Mo- K_{a} radiation ($0 \cdot 71069 \AA$) on a fully automated four-circle diffractometer and the structure was solved using the Multan program. Positional and anisotropic thermal parameters were corrected by least squares; the procedure converged to a standard crystallographic discrepancy index of $6.3 \% .^{\text {s }}$ The Figure shows the final three dimensional X-ray model with the absolute configuration of the analogous molecule of sideritol. ${ }^{1}$

This molecular model confirms the proposed structure of (3). No bond distances and angles deviate from accepted values ${ }^{7}$ for the given bond types. Double bond distances for the carbonyl $O(26)$ and olefinic bridge $C(13)-C(14)$ are $1 \cdot 208(6)$ and $1 \cdot 336(8) \AA$ respectively. No intermolecular contacts between non-hydrogen atoms less than $3 \cdot 38 \AA$ were found. Information concerning molecular deformation and five-membered ring conformation is shown in this X-ray study. Electronic repulsion between all α-substituents: $\mathrm{C}(19), \mathrm{C}(20), \mathrm{C}(14)=\mathrm{C}(13)$ and $\mathrm{C}(17)$ causes a bending effect on the main plane of the molecule (Figure). Distances between the α-substituents are $\mathrm{C}(19)-\mathrm{C}(20)=$ $3 \cdot 333(9), \mathrm{C}(20)-\mathrm{C}(14)=3 \cdot 122(8)$ and $\mathrm{C}(13)-\mathrm{C}(17)=3 \cdot 101-$ (8) \AA. Another deformation on the B ring is due to the presence of the carbonyl $O(26)$ which flattens this side of the chair-ring B half way (40%) between the chair and half chair conformations. The bicyclo-octene system has, however, no torsion on the $\mathrm{C}(9)-\mathrm{C}(11), \mathrm{C}(14)-\mathrm{C}(13)$ or $\mathrm{C}(15)-\mathrm{C}(16)$ bonds. The five-membered ring has a C_{2} half chair conformation with the pseudobinary axis going from $\mathrm{C}(16)$ to the $\mathrm{C}(22)-\mathrm{O}(23)$ bond. Calculated values for Δ and $\Phi_{\mathrm{m}}{ }^{8}$ are 497° and 36°, assuming the torsion Φ_{0} on the $\mathrm{C}(16)$ $\mathrm{C}(17)$ bond.
(Received, 24th July 1975; Com. 845.)

[^0]
[^0]: ${ }^{1}$ W. A. Ayer, J.-A. H. Ball, B. Rodríguez, and S. Valverde, Canad. J. Chem., 1974, 52, 2792.
 ${ }^{2}$ W. A. Ayer, C. E. MacDonald, and G. G. Iverach, Tetrahedron Letters, 1963, 1095.
 ${ }^{3}$ C. von Carstenn-Lichterfelde, S. Valverde, and B. Rodriguez, Austral. J. Chem., 1974, 27, 517.
 ${ }^{4}$ C. von Carstenn-Lichterfelde, F. M. Panizo, T. G. de Quesada, B. Rodriguez, S. Valverde, W. A. Ayer, and J.-A. H. Ball, Canad. J. Chem., 1975, 53, 1172.
 ${ }^{5}$ J. B. Nabors, D. H. Miles, B. Kumar, and L. H. Zalkow, Tetrahedron, 1971, 27, 2385.
 ${ }^{6}$ The following crystallographic programs systems were used: P. Main, M. M. Woolfson, J. P. Declercq, G. Germain, 'Multan System', Physics Department, University of York, York, England, 1974; J. M. Stewart, F. A. Kundell, and J. C. Foldwin, 'The X-ray System of Crystallographic Programs,' Computer Science Center, Univ. of Maryland, College Park, Md., 1970.
 ${ }^{7}$ O. Kennard, D. G. Watson, F. H. Allen, N. W. Isaacs, W. D. S. Motherwell, R. C. Pettersen, and W. G. Town, 'Molecular Structures and Dimensions,' ed., N. V. A. Oosthock, Utrecht, Netherlands, 1972.
 ${ }^{8}$ G. Chiwdoglu, 'Conformational Analysis,' Academic Press, New York, 1971, p. 1-13.

